高中数学答题必知的19条铁律和5种方法
来源:学大教育 时间:2016-12-15 15:33:57
高中是学生学习的关键阶段,许多学生学习努力但是成绩却无法提高,其实是学习方法出了问题,为了帮助大家学好高中功课,下面学大教育网为大家带来高中数学答题必知的19条铁律和5种思路这篇内容,希望高中生能够认真阅读。
铁律1
函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。
铁律2
如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法。
铁律3
面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……
铁律4
选择与填空中出现不等式的题目,优选特殊值法。
铁律5
求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法。
铁律6
恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏。
铁律7
圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式。
铁律8
求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点)。
铁律9
求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可。
铁律10
三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围。
铁律11
数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想。
铁律12
立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握 它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距”创造直角 三角形解题。
铁律13
导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上。
铁律14
导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上。
铁律15
遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成。
铁律16
注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等。
铁律17
绝对值问题优先选择去绝对值,去绝对值优先选择使用定义。
铁律18
与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成。
铁律19
关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
这19条铁律,希望对同学们有所帮助,让你在做题时,快速提升效率。
高考数学5种答题思路
在高考时很多同学往往因为时间不够导致数学试卷不能写完,试卷得分不高,掌握解题思想可以帮助同学们快速找到解题思路,节约思考时间。以下总结高考数学五大解题思想,帮助同学们更好地提分。
1、函数与方程思想
函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。同学们在解题时可利用转化思想进行函数与方程间的相互转化。
2、 数形结合思想
中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
3、特殊与一般的思想
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。
4、极限思想解题步骤
极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。
5、分类讨论思想
同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。建议同学们在分类讨论解题时,要做到标准统一,不重不漏。
高中数学答题必知的19条铁律和5种思路学大教育网为大家带来过了,希望大家能够在学习高中知识的时候掌握方法,这样才能提高自己的学习效率,从而在考试中取得好成绩。
更多深圳教育动态、 深圳小学最新资讯、 深圳初中最新资讯、 深圳高中最新资讯、 深圳小升初最新资讯 、深圳中考最新资讯 、深圳高考最新资讯 等最新资讯信息,请关注深圳中小学教育网。
热门资讯

-
在学大上初二物理辅导班有没有用
2018-11-07 -
2019年深圳中考录取:综合素质评价将影响录取结果
2018-11-02 -
深圳中考新政策7大重点解读
2018-10-12 -
深圳实验学校高中部怎么样_环境如何-图
2018-10-11 -
2019年深圳中考招生途径解读【指标生】
2018-10-06 -
2019年深圳中考招生途径解读【特长生】
2018-10-06 -
高考专业报考指导:如何确定填报专业的顺序
2018-09-27 -
高考专业报考指导:就业率高的十大专业盘点
2018-09-27 -
高考专业报考指导:光电信息科学与工程专业的就业前景怎么样
2018-09-27
热门问题
-
青岛高二学生去学大教育补习怎么样?
2021-09-03 -
秦皇岛高二学生英语差如何能进步?
2021-09-03 -
乌海初三化学成绩差有必要补习吗?
2021-08-13 -
兰州初中生报假期班有什么效果?
2021-06-25 -
深圳学大教育辅导班的费用贵吗?
2021-06-25 -
太原高中生从几个方面选择托管班?
2021-06-18 -
中小学辅导机构哪家比较好?
2021-06-18 -
小升初数学学习技巧有哪些?
2021-06-04